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Accurate solution for fluid heat flux distribution near a steady 
state 

R E Nettleton 
University of the Witwatersrand, Johannesburg, South Africa 

Received 2 January 1985 

Abstract. A solution, exact to terms of second order in the temperature gradient, V T, is 
obtained to a Fokker-Planck-type equation previously derived for the distribution g( u)  in 
values D of the local heat flux in a large, homogeneous fluid phase. The solution assumes 
V T is applied at time f = 0, causing the heat flow to build up and relax toward a steady 
state. An exact expression for the steady value of (U’) is obtained to order ( V  T ) *  to test 
an earlier result, obtained by an approximate expansion of g. The exact solution is more 
useful than the earlier one, which involved truncation errors, for calculating correlation 
functions, Relaxing terms in g are also calculated. 

1. Introduction 

The extended non-equilibrium thermodynamics is concerned with states of a fluid 
which are sufficiently far from an equilibrium or steady state that both heat flux, J, 
and temperature gradient, V T, are independent variables (Nettleton 1960, Muller 1967). 
In this regime, they obey the Cattaneo-Vernotte equation (Cattaneo 1958, Vernotte 
1958), 

a J l a t  = - 2 p w  - YV T (1) 

where L is a constant or slowly varying function of density and temperature and p is 
the coefficient in the entropy expansion, S = S, (p ,  T )  - pJ2, with p = density. If we 
introduce a distribution function such that g (  U) du  is the probability that the heat flux 
has a value U lying in the element du, then J is the first moment of g and  (1) the first 
moment of the equation obeyed by g. 

For the states for which (1) should be valid, a Fokker-Planck-type equation for g 
has been derived (Nettleton 1984) from the classical Liouville equation by a projection 
operator technique of Zwanzig (1960, 1961). This has the form, 

ag/at=KLw(U)Vt(g/  w ) + y v , g . v ~  (2) 

where W(u) = s  6 ( A J ( x )  - U )  dx, and A J ( x )  is the heat flux operator as a function of 
phase x. By finding a solution to (2), it has been possible (Nettleton 1984) to correct 
the Einstein function g - exp[-p( U - J )* /  K ]  ( K = Boltzmann constant) which has been 
used to discuss fluctuations from a non-equilibrium state (Jou et a1 1981). The solution 
was obtained as a sum of powers and products of J. ( U  - J), V T .  (U - J), J ,  and V T, 
with coefficients which are generalised Laguerre polynomials in z2  = ( p /  K)(  U - J)’, 
starting in zero order with the Einstein function, to which g must reduce in equilibrium. 
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When the solution was used to calculate (( U - J) ’ ) ,  it appeared that the Einstein function 
gives the correct result when V T = 0, but not in the presence of a temperature gradient, 
in agreement with a kinetic theory result (Jou and Careta 1982). 

While the solution to (2) in the form of an expansion in orthogonal polynomials 
was useful for elucidating the limitations of the Einstein approximation to g, it could 
not be used for accurate calculations of correlation functions. To obtain the numerical 
coefficients of the polynomials, it was necessary to truncate the polynomial expansion, 
introducing substantial numerical errors into an attempt which was made to calculate 
((U - J) ’ )  to second order in J and V T. To compute more accurate correlation functions 
and assess the error made in the truncation approximation, we shall proceed in 
subsequent sections to obtain an exact solution to (2) in which W is taken to be given 
by the Gaussian expression assumed previously (Nettleton 1964, 1984). This can be 
done for the particular case where an external temperature gradient V T is applied to 
the system, a small sub-volume immersed in an infinite fluid, at t =0, and then held 
constant so that the system relaxes toward a steady state. In addition to calculating 
(U’) for comparison with the earlier result, we shall be able to demonstrate the existence 
of the polynomial expansion previously assumed. One can also see that the truncated 
expansion is not a good representation for very small U and short times. Since the 
derivation of (2)  with constant L (Nettleton 1964) fails as t + 0, a solution valid for a 
time scale over which (1) holds may not be expected to satisfy all physical conditions 
appropriate to t = 0. 

In § 2, we shall specify the model and assumptions, thus delineating precisely the 
mathematical problem. In particular, we assume for the solution an expansion in 
powers of V T .  In 0 3, we consider the steady state and obtain in 9 0  3.1 and 3.2 an 
analytic solution for (2) to O(VT*) .  In § 3.3, the steady-state value of ( u 2 )  will be 
compared with the corresponding result from the truncated polynomial expansion, 
and this will furnish an estimate of the error inherent in the latter. In § 4, additional 
terms will be calculated which relax exponentially with time. These terms raise 
questions about the boundary conditions to be applied at t = 0. A summary and 
discussion of these points is given in § 5 .  

2. Basic assumptions and description of the problem 

The system to be studied is a small sub-volume immersed in a much large: fluid. Since 
the average heat flow, J, in the system is a fast variable which relaxes in a time short 
compared with the time required for appreciable heat exchange with the surroundings 
(Jou et a1 1981), the dynamics of this relaxation (Nettleton 1984) is calculated as for 
a closed system, from the Liouville equation. The term linear in VT is then added 
phenomenologically to (2) to represent the effect of the coupling to the surroundings. 
V T characterises the temperature difference between surroundings and system and is 
not an internal state variable of the latter. 

Since the relaxation closely approximates that in a closed system, the entropy is 
given by the microcanonical expression S = K In W ( J ) .  It is consistent with this, in 
deriving (1)  from the first moment of (2) (Nettleton 1984), to set 

w(u)=  C, exp(-pu2/K) (3)  
which was done in obtaining the orthogonal polynomial solution to (2) and will be 
done here in obtaining a more exact solution for comparison with the previous one. 
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Equation (3) has also been used (Nettleton 1964) in deriving phenomenological 
equations such as ( 1 )  from equations of the type of (2). The normalisation constant 

c, = n( E)(p/KT)3'2 (4) 

where E is the internal energy, which remains approximately constant during relaxation, 
and C l (  E )  is the volume of the energy shell of energy E, over which the x integrations 
are taken. 

Combining equations (2) and (4) ,  we write the equation to be solved in subsequent 
sections in the form 

( d / d t ) ( g /  w)=KLVt(g /  w ) + Y V ~ ( g / w )  * V T - ( 2 P / K ) ( g / W ) U ' V r  ( 5 )  

For small temperature gradient, the solution can be obtained as a sum of powers of V T :  

g /  W = K'+ G, + G2+O(V T 3 )  ( 6 a )  

G , = U . V T ( ~ ~ + ~ ; ~ - " )  ( 6 6 )  

(6c) c2 = (V ~ ) ~ ( 6 ~ ,  + 61' e-Ar  + 6:; e-"' + ( U  v T)'(&',+ e-Ar + 6;; e-*") 

where G, Gf ,  and  the eV are functions of U. A = 2pL so that the first moment of ( 6 b )  
will agree with the solution, 

J =  - ( ~ / 2 p L ) V T ( l - e - ~ ' ) ,  ( 7 )  
of ( 1 ) .  

If the ansatz defined by ( 6 a ) - ( 6 c )  is substituted into ( 5 ) ,  comparison of terms 
corresponding to a given power of V z A  U .  or  e-" or  product of these yields 
differential equations which determine G,, G:, dz,, and so on. The time-dependent 
terms will be taken u p  in § 4. 

3. Steady-state solution 

We set ( d / d t ) ( g /  W) = 0 in (5) and substitute the t + a limits of ( 6 a ) - ( 6 c ) .  The resulting 
solution for g can be used to calculate (U') to O(VT' )  for comparison with the result 
obtained from the earlier (Nettleton 1984) polynomial solution and  truncation approxi- 
mation. We can also establish that, if the solution is to be consistent with (7), the 
phenomenological Cattaneo-Vernotte equation ( l ) ,  and a normalisation condition, 
there must exist weak singularities at v + 0. 

3.1. Differential equations and physical conditions 

If we substitute the t+a limit of ( 6 a ) - ( 6 b )  into the static limit of ( 5 ) ,  we obtain 

(21 U') 6, + (61  v )  d 6 , l d v  + d 2 6 , / d v '  = = 2 p  y/  K'R L (8) 
KL[ (2/ v 2 )  622 + (81 U )  d6,, /dv + d2622/du2]  + ( y /  U )  d 6 , l d v  - ( 2 p  y/ K ) 6, = 0 (9)  

K L[ (21 U') d2,  + (41 U )  d d v + d26 , , / d  u2 + 2 + y 6 ,  = 0. (10) 

These equations can be solved successively and generate six arbitrary constants. 
Four of these constants are zero if we eschew singular terms O(u-") with a 2 1. The 
stronger of these must be discarded if g ( u )  is to be integrable and  expandable in 
Laguerre polynomials L!,''(v*) as assumed previously (Nettleton 1984). The remaining 
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two constants are determined by normalisation and  consistency conditions. From the 
normalisation condition that g be normalised to unity 

1; Cw e x p ( - p v * / ~ ) G ~ d u = ( V T ) ~ C ~ 4 ~  exp(-pv2/K) 

(11) 

5,: 
x ( & l  + ) G z 2 v 2 ) u 2  d v  = O .  

The consistency condition stems from the fact that the first moment of (2) agrees with 
the Cattaneo-Vernotte equation only if 

KL(2p/K)’( UZ12)(1’ = 8pL(u)”’ (12) 

where (U)”) is the O ( V T )  contribution to (U). Equation (12) is thus equivalent to the 
physical arguments used (cf Nettleton 1964) to derive (1) from (2). 

3.2. Analytic solution 

The homogeneous parts of (8)-(10) can be solved by an expression of the form up,  
with p determined in each case by substitution into the equation. To the solutions for 
the homogeneous parts, we add  particular solutions which can be found in a similar 
way as sums of powers of U. Thus we find 

Gl = c ; v p 1 + & r v 2  (13) 

where pl =4[(17)”2-5]. In line with the discussion in 5 3.1, we have discarded a 
possible term U’ with a = -$(17)”2+5]<-4. From (12) we establish that 

c; = - 4 5 “ r ” 2 ( K / ~ ) ’ - P 1 ’ ’ / [ 3 2 ( p , +  1)?(p1+3)r($(Pl+ I ) ) ] .  (14) 

On substituting (13) into (9), we find we can solve the latter by methods similar 
to those applied in (8). The result is 

&22 = Czvp2 + avpl + bv2+ c u p ~ i 2  + dv4 (15a) 

U = -( y / 2 K L ) c {  (15b) 

b = -/AY*/ ( 80K3SZL2) (15c) 

c = YILC;/[~(PI + 3 ) K 2 ~ 1  (15d) 

d = p 2 y 2 / (  1 8 4 ~ ~ ~ ’ )  (15e) 

p2 = ;[ (4 1 ) ’ ’* - 71. (15 f )  

Equations (15a)-(15e) can be used in ( lo ) ,  with the result 

6- 7 1  - - &p2+2+  & y , + 4 +  & 4 +  &6 ( 1 6 ~ )  

6= -c,/5 (166) 

C =  - ~ / ( 3 p l +  14) (16c) 

6= -py2/ (300K3f lL2)  (16d) 

P = -d/28. (16e) 

The solutions to the homogeneous equation are discarded in (16a) since they are 
singular and  O ( u - ’ )  and 0 ( f 2 ) .  Such singularities contradict the structure of g 
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assumed in deriving phenomenological equations such as (1) from the equation for g 
and, when unavoidable, are more likely a consequence of approximations rather than 
intrinsic physical properties of the system. 

The constant C2 is determined by introducing (15a)  and (16a)  into (1  1). We find that 

c , (Pz+ 3 ) ( P 2  + 1 ) (  K /  P )‘pz-”’2r(8P2 + 1 ) )  

= ( p ~ ~ / ~ ~ ~ L ~ ) ( 1 5 ? ~ ’ ’ ~ / 1 6 ) {  - A + & +  5(3p, -I- 59)/[16(p, + 91). (17) 

3.3, Static correlation function compared to polynomial result 

If we calculate (U’) ‘ ’ ’ ,  the O(V T 2 )  contribution to the static correlation function, ( u 2 ) ,  
we obtain 

( u ’ ) ‘ ~ )  = 47rCw los exp( - p v 2 /  K ) (  6,, + f 6 2 2 ~ 2 ) ~ 4  du(V T)’ 

= ( V  T)’( y/pL),O.853 86. (18) 

This is to be compared with the truncated Laguerre polynomial calculation (Nettleton 
1984 equation (19)) which (U’)‘’’  = ( V  T ) 2 (  y / ~ . L ) ~ 0 . 5 4 5  29. 

We see that the truncation approximation gives the right order of magnitude but 
is not accurate. It is useful, therefore, for discussing corrections to, and  the domain 
of validity of, the Einstein approximations as well as for estimating correlations of 
fluctuations from an arbitrary non-equilibrium state in which J and V T are indepen- 
dently specified. This is a situation more general than that covered by the exact solution 
developed here. 

4. Time-dependent solution 

Since the earlier polynomial solution (Nettleton 1984) had terms involving powers of 
J, and J has a relaxing contribution e-A‘, we should expect G, to have a contribution 
linear in eCA‘, while G, has terms both linear and quadratic, corresponding to terms 
O ( J 2 )  and O ( J .  C T )  in the earlier solution. These relaxing contributions are embodied 
in the expressions given in (6b),  (6c). In the present section, we substitute (6a)-(6c) 
into (5) without taking the static limit d / d t ( g /  W) = 0, and compare terms of correspond- 
ing order in powers and products of e-*‘ and  T T  to obtain differential equations for 
6;, 6;,, and 6;; ( j =  1,2). 

4.1.  Contribution to G1 

On substituting ( 6 b )  into ( 5 ) ,  we find by comparing terms proportional to U .  V T e-” 
that 

~ L [ ( 2 / ~ ’ ) 6 ; + ( 6 / v )  d 6 1 / d v + d 2 6 i / d u 2 ] +  A6; = O .  (19) 

6; = cl,x-5?T,(x) (20) 

This equation has the solution (Kamke 1948, p 4401 

where x = ( 2 p / K ) 1 ’ 2 U ,  z7 = f( 17)”2, and J ,  is a Bessel function of the first kind. The 
solution with Ji. + J - ,  is dropped, since it would introduce a non-integrable singularity 
at u + O .  



2362 R E Nettleton 

The constant C,, is determined to make the relaxing term in J = (U)“’ agree with 
(7), i.e. 

( 4 ~ / 3 ) C w  loa e x p ( - p v 2 / ~ ) 6 ; v 4  dv 

= ~ , , 2 - 5 / 2 ( 4 . i r / 3 ) ~ ~  

= y/2pL. 

The integral in this equation can be evaluated in the form: 

lox e-x212 x 3 / 2  Jfi(X)dX 

=[r(+fi+$)/(2 2’2-(1’4)r( F +  i ) ] ,~ , (+fi+: ;  F +  1 ;-4) 
,F,  is the generalised hypergeometric function (ErdClyi 1953, vol 1, p 182). 

4.2. Relaxing components of G2 

The equations obtained by comparing terms proportional to ( U  V T)’ e-“ and 
( U  - v T ) ~  e-2A‘ are, respectively 

A6i2 + KL[ (21 U ’ )  6 i 2  + (81 V )  d6k2/du + d26’:,/dv2] + ( y /  u )  d - ( 2 p  y /  K ) 6: = 0 

(23a) 

(23b) 2 

The solution to (23b) and the homogeneous part of (23a) is 

+ K L [ ( ~ /  U ’ )  6:s + (81 U )  d&/du + d26:i/dv2] = 0. 

so that we have immediately 

We have discarded an unintegrable singularity which would arise from inclusion of 
the second solution, proportional to LV. 

In addition to a term of the type given by (25), 6i2 has an additional term, 
representing a particular solution of the inhomogeneous (23a). We can write this 
equation in the form 

d26’:,/dX2 + (8/x)  d 6 i 2 / d x  + 26i2($  + x - ~ )  = h ( x )  

h ( X )  = -yC~,x-5’2{x-1J~-I (x)  - Jfi(x)[l +x-~( ;+  f i ) ] } .  

(26a) 

(26b) 

A particular solution to (26a) can be constructed (Kamke 1984, p 117) in the form 
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Substituting from ( 2 4 )  and ( 2 6 b )  into ( 2 7 a ) ,  we calculate 

y l ( x )  =,y-7’2J-,(x).rr(sin v ~ ) - ’ y ~ , , [ ( v +  s+l)r(v+l)r(fi+ 1)2’+’+’]--1 

XX”+G+l{ -(;+ v)3F4($( v +  P ) +  1, .(U+ v+ l ) ,  +( v +  v+ 1);  v +  1, 

x v + 1, v + v+ 1, +( v + v+ 3 ) ;  - x 2 )  + 2 ~ , ~ , ( f (  v + fi + I ) ,  

x + ( v + v ) , ~ ( v S v + l ) ;  v + l ,  v, v + v , . ( v + v + 3 ) ; - x Z )  

-( v + V +  1)( v +  F+~)-’x*~F,(.( v +  8) + 1, .( v +  V +  l ) ,  

x i (  v +  8 + 3 ) ;  v + 1, C + 1, + fi + l , f (  v + fi + 5 ) ;  - x 2 ) }  - ( v + - V )  ( 2 8 ~ )  

6;* = ~ ; * x - 7 ’ 2 J y ( x ) + Y l ( x ) .  ( 2 8 b )  

From comparison of terms proportional to (Q T)’ e-” and (0 T)’ e-’’‘, we have, 
respectively: 

A6il  + ~ L [ 2 6 & +  ( 2 / ~ * ) 6 ’ 5 ~  + ( 4 / u )  d&iI /dv  +d26:,/du*]+ y 6 ;  = 0 

2 h 6 ~ ~ + ~ L [ 2 6 ~ ; + ( 2 / u ~ ) G : ~ + ( 4 / u )  d & : f / d u + d 2 ~ : f / d v 2 ] = 0 .  ( 2 9 b )  

( 2 9 a )  

By methods similar to those employed in calculating &, with a particular solution 
calculated as in  ( 2 7 a ) ,  we obtain 

( 3 0 a )  v ’ = L  6;; = C : ; ~ - ~ / * J ; ( ~ ~ / ~ ~ )  + Y , ( ~ ) ,  2 

y*( x) - 7 T (  K /  p ) 2 3 ’ 4 c  :;x-3’25 - ;( 2”*x ) {x (  21’2/ 1 o)( J i- I ( 2”*x)JV ( 2 ’ / * x  

- J ; ( 2 ” 2 ~ ) J y - l ( 2 ’ ’ 2 x ) ) + (  ;+ ~)-‘J;”’’’x)J”2’/*x)}-(  v’+ - C )  ( 3 0 b )  

6;’ = c ; l x - 3 ’ 2 J ; ( x ) + Y 3 ( x )  ( 3 1 ~ )  

y 3 ( x )  = ( 7 T / , . 4 x - 3 / 2  ( 2 i ) J - , (  ( y / 4 L ) c , , [ r ( v + i ) r ( i + i ) 2 ~ + ~ ( v +  v+ i ) l - l  
i . = = 1 / 2  

x,y”’i+’3F,(+( 8 + v’) + 1, +( 8 + v’+ 11, +( v+ i+ 1); v + 1, v’ + 1, v+ ;+ 1, 

x ( J ; - , ( x ) J , ( x )  - J ; ( x ) J v - 1 ( x ) )  - (;+ v ) - ’ J ; ( X ) J , ( x ) l  

x ;( fi + v’ + 3) ; - X 2 )  + ; K c ; , [  ( ;* - V 2 ) - ’ X  

x { - (;+ F ) ~ F ~ ( $ (  v +  8) + 1, t ( v +  v+ I ) ,  +( v +  fi+ I ) ,  m +f( v’+ v i  1);  

+21,F5($( v +  v+ l ) ,  $( v +  8), $( v +  8+ l ) ,  m +.( ;+ v+ 1) ;  

x v +  1, v, v + 8, +( v +  F+3), m +;( v’+ V + 3 ) )  

x v + 1, 6 + 1, v + fi + 1, $( v +  5 + 3), 111 ++( C + F + 3 ) ;  - x 2 )  

+ ( v’+ v + 2 m  + 1)( v + v + 1)[ ( v’ + V + 2 m  + 3)( v + fi + 3)I-l  

X x 2 , F 5 ( $ (  v +  6) + 1, $( v +  V i  l ) ,  t (  v +  6 + 3 ) ,  m +.( v’+ 6 1 3 ) ;  

X V + I , V + I ,  v+v+l,+(v+8+5),m+i(v’+i+5);-~*)) 
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The four constants, CS1, Cii, Ci2, and C::, are to be determined by the normalisa- 
tion and boundary conditions. The normalisation of g to unity requires that 

5: e X p ( - p U 2 / ~ ) ( ~ . ; 1 + ~ & : 2 U 2 ) U 2  dU=O 

exp(-pcLv2/K)(6;; + $ & ~ ~ u 2 ) u 2  du. 
= JOX 

A boundary condition sufficient to determine the remaining two constants is provided 
by inertia, which prevents any instantaneous response, i.e. 

( UU)(’) = 0 when t = 0. ( 3 3 )  

This tensor equation has two independent components, e.g. ( U, U,)”) and ( u 3 v 3 ) ( * ) ,  where 
v3 is the component along VT. 

If we apply condition (33), then C;,  and C:; cannot vanish, and &;,, 6;; have 
singularities O(v- ’ ) .  These are integrable and can be expanded in infinite sums of 
generalised Laguerre polynomials L:’2’( U’). Therefore, there is no inconsistency with 
the assumptions of the earlier work (Nettleton 1984). However, the polynomial sum 
converges slowly as U + 0. It must be remembered that (2) with constant L is no longer 
valid as t + 0 ,  since L (Nettleton 1964) is a correlation function which becomes 
time-dependent for small t. Therefore, it would be equally reasonable to eschew O( U-’) 
singularities, set C:, = 0 = C:;, and impose no inertial requirement on the higher 
moments of g at t = 0, since the expression on which we seek to impose such a condition 
is valid only at longer times, when (1) holds. Under these circumstances, since y 2 ( x )  
and y 3 ( x )  are not singular as U + 0, and the remaining terms in g to O(V T 2 )  do not 
become infinite at t = 0 when we take into account the factors U V T and ( U  - V T)’, g 
will have no infinities. The existence of infinities is an  indication of an  invalid extension 
of (2) and  (5) into a time domain where they no longer apply. 

5. Summary and discussion 

In earlier work (Nettleton 1964) it was demonstrated that, with the aid of a projection 
operator proposed by Zwanzig (1960, 1961), one can derive from the classical Liouville 
equation a Fokker-Planck-type equation for the distribution g of fluctuations of the 
thermodynamic variables from their averages in a time-dependent ensemble. This can 
be done for the case where the variables include the heat flux or time derivatives of 
structural parameters, so that we are in the domain of extended non-equilibrium 
thermodynamics. This formalism has been applied (Nettleton 1984) to calculate the 
distribution g ( v )  of values v of the average heat flux through a small sub-volume 
immersed in a much larger fluid. The calculation assumes an  arbitrary non-equilibrium 
state, with J = (U) and V T prescribed independently and the solution is obtained as a 
sum of powers of J, V T ,  U, and scalar products thereof with coefficients which are 
sums of generalised Laguerre polynomials L~’*’(z’) ,  L = ( p / ~ ) ” ~ (  U - J ) ,  

The expansion in Laguerre polynomials permits us to discuss fluctuations from an  
arbitrary state, which is more general than the case considered in the present paper 
where the system relaxes toward a steady state, induced by constant V T  applied at  
t = 0. However, to calculate the numerical coefficients in the polynomial expansion, 
it was necessary to truncate the latter, leading to errors whose magnitude could not 
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be assessed without an  exact solution to (5) for g of the kind obtained in the present 
paper. When the present solution is used to calculate the O(V T’) contribution to (U’), 
and this is compared with the earlier result, we find there is order-of-magnitude 
agreement only, so that the polynomial expansion is useful only for discussing the 
validity of the Einstein approximation to g and  the form and  magnitude of corrections 
to it, but a more accurate solution for g is required if we seek to calculate correlation 
functions. 

A problem arises when it comes to calculating a time-dependent solution from the 
circumstance that (2) was derived with a view to predicting (1) from its first moment. 
Therefore (2) and ( 5 ) ,  with constant L, are only valid for times when (1) holds and  
not as r + 0. In the latter limit L, which is a time correlation over time t (Nettleton 
1964, cf (33)), is time-dependent. Therefore, it is not entirely consistent to apply a 
boundary condition such as (33). The latter should hold if the solution were physically 
exact as t + 0, since otherwise there is an  ins tp taneoys  response. However, we have 
seen in § 4.2 that infinities O(U-’) appear in G;, and G:; if (33) is imposed, and their 
origin is most likely related to the unphysical nature of the solution in the t + 0 limit. 
We can remove the infinities by setting C ; ,  = 0 = C:;, causing the higher moments of 
g, but not the first moment, to exhibit an instantaneous response as t -+ 0. The correlation 
functions are then expected to be correct at longer times, where the assumptions behind 
( 2 )  and (5) can be justified and, in particular, as t + 0. We should be able, therefore, 
to use the solution calculated in § §  3 and  4 in the extended non-equilibrium thermo- 
dynamic regime and in the static limit. 

While the exact solution can be obtained in a form which has no infinities, still we 
see from (13), (15a ) ,  (25) and (286) that there are weak singularities O ( u - “ ) ,  where 
a < t as U + 0. Such a function can be expanded in polynomials L:”)( U’), although 
truncation fails for small U. Accordingly, the only contradiction with the assumptions 
of the polynomial solution of ( 5 )  is to call in question the numerical accuracy of any 
low-order truncation of the expansion. 
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